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A numerical study is made of the flow past an impulsively started rotating and 
translating circular cylinder using a hybrid vortex method. The Reynolds number 
(Re) ranges from lo3 to lo6 while the (counter-rotating) rotating-to-translating speed 
ratio (a) is increased from 0 to 2 .  It is found that three basic patterns of vortex 
shedding can be identified according to the behaviour of the stagnation points 
associated with the first upper and the first lower vortices. Depending on the 
parameters Re and a, the rotation may favour the shedding of the first upper vortex, 
or the first lower vortex (typically a t  high Reynolds numbers). I n  a transition region, 
strong competition for shedding exists between the first two vortices in the form of 
double transposition of stagnation (closure) points associated with the two vortices. 
Time variations of lift coefficients characterize different shedding patterns ; the 
cylinder may first experience a substantial maximal downward lift when the first 
shedding vortex is from the upper wake, or a maximal upward lift otherwise. 

1. Introduction 
There has been a continuing interest in the study of flow past a circular cylinder. 

The complicated unsteady flow patterns near the cylinder are representative of many 
phenomena that occur in fluid dynamics. The flow has been investigated by many 
researchers employing asymptotic analysis, finite-difference methods and flow 
visualization experiments. Each of these studies concerns a certain range of 
Reynolds numbers (Re) a t  various rotating-to-translating speed ratios (a) (cf. figure 
1 )  since the flow may vary significantly depending on these parameters. Asymptotic 
results are usually valid only at small times, e.g. Wang (1967) and Bar-Lev & Yang 
(1975), while numerical works are mostly limited either to flows at low Reynolds 
numbers or to  flows at small speed ratios, e.g. Ingham (1983) and Townsend (1980). 
Experimental work on flows at moderately high Reynolds numbers seem to be 
fragmentary; there appears to be a lack of detailed information concerning the 
nature of the wake. A fairly full account of the influence of rotation for flows a t  
Reynolds numbers Re = 200, 500 is given in Badr & Dennis (1985) and Coutanceau 
& Mdnard (1985~) .  Badr et al. (1990) have recently extended their work to include 
some cases a t  Re = 1000 and lo4. 

The present study by a hybrid vortex method is to investigate how the vortex 
shedding is influenced by the rotation of a circular cylinder (0 < a < 2 )  in a range of 
higher Reynolds numbers (lo3 <Re < lo6). The flows are assumed to be two- 
dimensional throughout our investigation. Numerical results are presented for the 
lift ; drag and moment coefficients ; surface vorticity, and surface and spatial pressure 
distributions ; and instantaneous streamlines a t  different times. Observations of 
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FIGURE 1.  Schematic of the physical problem. Re = ZUa/v, a = Ba/U. 
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FIGURE 2. Three basic regions of vortex shedding behind the cylinder. 

streamline patterns are based on a frame translating with the cylinder. The hybrid 
vortex method consists of solving a Poisson's equation for the stream function, and 
solving the viscous vorticity transport equation by interlacing a finite-difference 
method for viscous diffusion and a vortex-in-cell algorithm for convection. Note that 
the present method, which is based on a stream function-vorticity formulation, is 
completely deterministic in contrast to the previously developed stochastic methods. 
We refer to Sarpkaya (1989) for an extensive review of methods of this kind under 
the general heading ' computational methods with vortices '. 

The common points of interest for flows past a circular cylinder are the detailed 
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vortex structures in the near wake, and the forces and the moment exerted on the 
cylinder. In the present study, the lift and the drag coefficients are carefully 
computed with three approaches. First, we evaluate the force coefficients in terms of 
the surface vorticity and its normal derivative. The second approach employs, for 
each azimuthal angle, the surface pressure which is obtained by integrating the 
momentum equation radially from infinity to the cylinder surface. Furthermore, we 
investigate the approach of computing the force coefficients introduced by 
Quartapelle & Napolitano (1983) who utilized harmonic functions to transform 
integrals of pressure into those in terms of flow quantities. It is noted that the second 
and third approaches do not require evaluating vorticity gradients on the cylinder 
surface. Careful comparisons show, a t  small times, close agreement between Badr & 
Dennis’s (1985) analytical results and those computed with the latter two approaches 
for the lift and the drag coefficients. By a vortex we mean a recirculating fluid cell 
in the (near) wake behind the cylinder. In order to study the detailed flow structures, 
we investigate the behaviour of the stagnation points in the flow, as done by 
Coutanceau & MBnard ( 1 9 8 5 ~ ) .  Three types of stagnation points can be classified in 
a typical flow according to their natures, as illustrated in figure 1.  One stagnation 
point (S) is always formed near the front of the cylinder. In the near wake stagnation 
points are created, which may then disappear after a while. These stagnation points 
usually appear in pairs and can be identified as centres (0) or closure points (C) of 
vortices. The streamline pattern near a front stagnation or a closure point is typically 
of non-orthogonal saddle-point configuration. It is found that the initial vortex 
shedding is determined by the parameters Re and a in a manner as shown in figure 
2. The diagram consists of three regions, denoted by R,, R ,  and R ,  respectively; 
these regions are separated by the curves C, and C,. Region R, represents the 
rotation favouring the shedding of the first upper vortex. Previous observations by 
Badr & Dennis (1985) and Coutanceau & MBnard ( 1 9 8 5 ~ )  fall into this region. An 
exchange of closure points occurs between the first lower and the second upper 
vortices, which has been termed by Coutanceau & MBnard the phenomenon of single 
transposition. In region R,, the rotation favours the shedding of the first lower 
vortex. The single transposition phenomenon is found to exist between the first lower 
and the first upper vortices. Between these two regions, there exists region R, where 
the rotation favours the shedding of the first upper vortex. The shedding, however, 
involves a process that twice exchanges the closure points between the first upper 
and the first lower vortices. This double exchange of closure points is hereafter called 
the phenomenon of double transposition. Time variations of lift coefficients are found 
to be clearly related to different shedding behaviour; the cylinder may first 
experience a substantial maximal downward lift if the vortex to be shed first is from 
the upper wake, or a maximal upward lift if a lower vortex is to be shed first. The 
main body of the paper is devoted to the detailed numerical results that further our 
understanding about the nature of different shedding patterns and their relation to 
the time variations of the lift, drag and moment coefficients. Selected comparisons of 
the present and previous numerical and experimental results of Badr et al. (1990) 
show close agreement in streamline patterns and velocity profiles. 

2. Basic equations 
Consider a fluid of density p and constant kinematic viscosity v. The flow past a 

circular cylinder is governed by the NavierStokes and the continuity equations. 
Some flow parameters are shown in figure 1. Let the reference length and velocity be 
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the cylinder radius (a)  and the speed of the distant flow ( U )  rcspectively. I n  
dimensionless form, these equations may be written 

aulat + (u . V) u = - VP + 2Re-IV2u, 

v.u = 0, 

where u denotes the velocity and P the pressure, and Re = 2Ua/v is the Reynolds 
number. The rotating-to-translating speed ratio is related to  the angular rotating 
speed SZ of the cylinder by cr=Qa/lJ.  The dimensional velocity u*, time t* and 
pressure P* are given by 

u* = ~ J u ,  t* = at/U,  P* = p V P .  (3) 

For the present study, it is convenient to work on a stream function-vorticity 
formulation. By introducing an appropriate stream function $ and the vorticity 
function w = V X U ,  we may recast equations ( 1 )  and ( 2 )  as 

V2$ = - w  (4) 

and ao/a t ( u s  V) o = 2BeP'V2w, (5) 

where w = w k .  Rcfer the motion to a polar coordinate system ( r ,  0) ; the cylinder 
surface is at r = 1 and the coordinate ( 1 , O )  coincides with the rear stagnation point 
of the corresponding potential flow. 

Let t = 0 define the start of the motion ; the initial condition a t  t = 0 + consists of 
the potential flow and a vorticity sheet a t  the cylinder surface. The boundary 
conditions for (4) are that,  for t > 0 

$ = O  for r =  1, 

-a$/ar+-sintl as r+m, (66)  
while the boundary conditions for (5) are that, for t > 0 

u-eH=cc for r =  1, 

o + O  as r+m. 

The velocity u is related to the stream function $ through 

where er and e, are the unit vectors along the radial and azimuthal directions 
respectively. 

Let 1, and D denote the lift and drag exerted on the cylinder per unit length while 
M denotes the frictional moment. Let ,u he the dynamic viscosity. The lift, drag and 
moment coefficients are thcn defined respectively by 

Each of the drag and lift coefficients can also be written as C, = G D P + C D F ,  
C, = C L P + C L F ;  C,, and C,, are due to pressure while C',, and C,, are due to 
friction. Let 8, denote the cylinder surface of unit lcngth. The force coefficients are 
then given by 

r 
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where n is the unit vector directed toward the cylinder. Typically, one evaluates 
these coefficients in terms of the surface vorticity and its normal derivative. Indeed, 
it can be shown that 

C L = - $ [ g - w )  1-1 cos8dB. 

The first term in each of these integrands is due to pressure; the other is due to 
friction. These formulae can be easily derived by rewriting (1) in the form 

and applying i t  to (10) along the cylinder surface, with some manipulations. We may 
also compute directly the surface pressure which is substituted in (10) to evaluate the 
force coefficients. In the present study, the pressure distribution is obtained by 
integrating the r-component of (12) by prescribing the value of P a t  co to be 0, 

where u = u(r, 8). To exhibit the accuracy and maximize the usefulness of the 
numerical solution, we further compute the force coefficients by another approach 
proposed by Quartapelle & Napolitano (1983). By taking inner products on both 
sides of (12) with appropriate harmonic functions vi and rj,  one may show that 

where I' denotes the flow region. For (14a, b) to hold, it is adequate to take 
vi = cos 8 / r  and vj = sin 8 / r .  Notice that the first integral in each of ( 1 4 4  and (14b) 
is invariant under the reversal of the sign of the velocity u. The integrands inside the 
second integrals of (14a) and (14b) become, in terms of the polar coordinates, 
respectively 

where wo denotes the surface vorticity. Each of these is contributed equally by the 
pressure and friction. The (frictional) moment coefficient is simply given by 

- 20, sin 8 and 2w0 cos 8, (15) 

CM = &l (w0-2a)d8. 

We now have three approaches for computing the force coefficients (due to pressure). 
They are hereafter denoted approach S ( l la ,  b ) ,  approach P (10) based on (13), and 
approach V (14a, b). From the numerical point of view, V could be preferable to S 
in some aspects as explained below. In a rapidly changing flow, the vorticity has in 
general a fairly large gradient near the cylinder. In a stream function-vorticity 
formulation, the gradient is not obtained directly from the numerical solution but 
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through interpolation ; the error inherent in it is therefore inevitably large which 
makes the interpolation not very reliable. Indeed, as we shall see, numerical results 
in $4 indicate that V and also P are much better than S, especially in the early stages 
of flow development. 

3. The hybrid vortex method 
The present vortex method for incompressible viscous flow can be abbreviated as 

follows. The vorticity field is approximated by a sum of ‘blob ’ functions - called 
vortex blobs or simply vortices. Each vortex evolves in a Lagrangian manner 
carrying with itself a circulation determined from the vorticity. The vorticity is 
obtaincd by solving the vorticity diffusion equation on a grid by a finite-difference 
method. The circulations are then redistributed and converted back to the vorticity 
on the grid, which is thus updated. At the beginning of each time step there are only 
vortices centred a t  mesh points. Therefore, first, we approximate the vorticity field 

(17) 

where L is the number of vortices (or mesh points) andfj(r) is the blob function. rj 
and rj are respectively the circulation and the position associated with the j t h  vortex 
blob. In  practice, the function fi(r) is conveniently taken to be an indicator function 
so that the vorticity is constant over the indicator set chosen, outside which the blob 
function is zero. Highly accurate blob functions may be available in the form of 
combinations of some elementary functions; see, for example, Hald (1979) and Beale 
& Majda (1985). 

Next we describe the polar coordinates ( r ’ ,  0) adopted by Smith & Stansby (1988) 
in their work on random vortex contents. This was introduced for the solution of the 
Poisson equation (4) and for the creation of vorticity along the cylinder surface. For 
the present purpose, the coordinate system is also used to solve the vorticity diffusion 
equation in order to take into account the effect of viscous diffusion. In terms of the 
polar coordinates (r’, 19) the Poisson equation (4) may be written 

L 
by 

4, r) = x q f j ( r - q ,  
j-1 

where a ( / )  = (vdr’/dr)z, b(r’)  = rdr’/dr+ r2 d2r‘/dr2, (1% b )  

r = c(v’) = B(eA”- 1)+ 1. (194 

For each time increment, (18) is solved on a mesh with a uniform mesh size in the 
coordinate system (r‘, O ) ,  defined over an annular region outside the cylinder surface 
(1 < r < ro) .  Fine resolution is required near the surface of the cylinder. The 
constants A ,  B in (19c) are fixed by the radial mesh spacing at the cylinder surface, 
and by the value of the outer radius ( ro) .  The value of ro must be sufficiently large 
for (76) to be an adequate approximation and for all the vortices to  be contained 
within the mesh. 

Denote by (i ,j)  the node of the grid; r‘ = j and I9 = iAO(AI9 = 2n/p ,  0 < j < q- 1). 
Let $(i,j) be the nodal value of the stream function a t  (i ,j) .  In  actual computation, 
(18) is solved by a central finite difference in r’ with the help of Fourier collocation 
for the second derivative in 8. This yields a set of p tridiagonal equations, which can 
be solved efficiently by Gaussian elimination. Once (18) is solved, the stream function 
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is used to update the vorticity on the boundary so that the no-slip condition is 
satisfied. Notice that along the boundary, (18) reduces to 

Imagine that the stream function can be extended across the cylinder surface to 
possess meaningful values $(i, - 1) .  Then, a t  least to a first-order approximation, 

so that the tangential velocity along the cylinder surface is zero. Hence, a central 
finite difference applied to  (20) gives the surface vorticity 

The value of o(i, 0) can actually be evaluated more accurately by interpolating the 
stream function using three or more radial mesh values near to the surface of the 
cylinder, followed by differentiation. With the solution of (18) and the boundary 
vorticity w ( i , O )  in (22), each vortex on the grid is convected by the velocity 
determined from (8) while the associated vorticity evolves according to the diffusion 
equation 

(23) 
The circulation carried by each vortex is then distributed between the four corner 
nodes of the cell in which the vortex is contained. The area-weighting scheme 
suggested by Christiansen (1973) is used. Let r(i,j) be the total circulation associated 
with the node ( i , j )  ; the nodal value of w is given by 

The redistribution of circulation with (24) completes a cycle of computation a t  each 
time step. The present hybrid vortex method therefore, at each time step, consists 
of solving the (4) and ( 5 )  as follows: 

(i) equation (18) is solved on the grid ; the solution is used to  update the vorticity 
on the cylinder surface to  satisfy the no-slip condition ; 

(ii) equation (23) is solved on the grid by a finite difference; the circulation 
associated with each vortex on the grid is then evaluated according to the formula 

(iii) each vortex on the grid along with the associated circulation is convected with 
the velocity determined by (8) using the values of the stream function obtained in (i) ; 

(iv) redistribute all the circulations; add a t  each mesh point the contributed 
circulations and convert the result into vorticity, according to (24). The current 
vortices are then discarded while a new set of vortices are regenerated on the grid. 
Go back to  (i). 

The above numerical procedure is a method of viscous splitting, and is first-order 
accurate in time. The time accuracy can be improved by adopting a midpoint rule 
for evaluating the velocities of the vortices on the grid. One way of achieving this is 
to calculate the velocity using the average of the current vorticity and a predicted 
vorticity for the next time step. This modified method is conceived to be second- 
order in time, and is actually used in computation. We refer to Beale & Majda (1981) 
for some validation of the splitting scheme. It is further noticed that the area- 

(24) ; 
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weighting scheme is a mild source of numerical diffusion, even though its effect 
becomes smaller as the meshing becomes finer. The accuracy of the numerical 
method will be assessed in the next section. 

4. Numerical results and discussion 
The purpose of the section is three-fold: to present some fundamental shedding 

processes; to validate the numerical results; and to assess the force formulae - 
approaches S, P and V - proposed in $2. Consideration is concentrated on 0 c a < 2 
in a wide range of Reynolds numbers betwcen 1000 and lo6 ; this includes Re = 1000, 
3000, 9500, 20000, lo5 and lo6. Basically, we terminate the calculation in each case 
of study once the pattern of initial vortex shedding may be identified. 

The radial spacing next to the cylinder surface is taken to  be the standard 
deviation of viscous diffusion over one time step. Grid dependence has been checked 
against the time step for the drag coefficients (figure 15) and streamline patterns 
(figure 10) ; i t  is found that the grid p x q = 128 x 200 with the time step At = 0.02 and 
ro = 25 is satisfactory for Re < 20000 but is only adequate for Re = lo5 and los 
within much limited time intervals. Validity of the present grid system for initial 
resolution is also confirmed in $4.4 by comparisons with Badr & Dennis’s analytical 
results for the lift and drag coefficients a t  small times (figure 14). Comparisons of the 
streamline patterns (figures 11, 12) and velocity profiles (figure 13) for some selected 
cases a t  Re = 1000 are made with previous numerical and experimental flow 
visualization results of Badr et al. (1990). Each cycle of computation from (i) to (iv) 
takes nearly 2.5CPU seconds on a Convex Cl/XP Machine with the grid 
p x q =  128x200. 

4.1. Vortex shedding 

I n  order to get insight into the detailed flow structures, we first examine the 
streamline patterns for each Reynolds number individually. Results are, however, 
shown only for some selected cases of fundamental interest. Note that the observed 
streamlines are based on the frame translating with the cylinder but not rotating 
with it. According to the shedding order, the vortices to be shed are denoted 
consecutively by E,, E,, E,, and so on. Intermediate vortices related to the formation 
of El, E,, ... are denoted by E;, EY, Ek, Ei, ... consecutively. Here the phrase ‘shed- 
ding’ is used somewhat loosely to describe the behaviour of detachment of a vortex 
from the cylinder; more precise definitions related to the shedding behaviour are 
attempted in $4.6. 

4.1.1. Re = 1000, a = 0.5 
Figure 3 (a) shows the existence of El and a bulge phenomenon of streamlines near 

the right lower side of the cylinder. Figure 3 ( b )  shows that the vortex E, grows 
gradually in the upper wake while the bulge leads to the formation of the vortex E,. 
The same plot shows that the intermediate vortex Ei has made its appearance next 
to the cylinder in the lower wake before t = 3. Figure 3 ( b ,  c) indicates that E, is 
disengaging from the cylinder. Figures 3(c, d )  shows that between t = 7 and 8 the 
flow structure in the near wake changes rapidly. During that period, the upper free 
stream curves downward somewhat while E, grows upward rapidly. The process 
leads to the formation of the intermediate vortex E: before t = 8, which marks the 
complete detachment of E, from the cylinder. Figure 3 ( d ,  e )  indicates that E, and Ei 
exchange their closure points shortly after t = 8. This is the phenomenon of single 
transposition of closure points observed previously by Coutanceau & MQnard (1985a) 
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FIGURE 3. Patterns of instantaneous streamlines for Re = 1000, a = 0.5: (a) t = 1, ( b )  3, (c) 7, 
(4 8, (4  9, (f) 12. 

and Badr & Dennis (1985) a t  Re = 200,500 (a = 0.5 , l ) .  Notice that Ek has existed in 
the lower wake in the form of an isolated vortex (confined by E2). Figure 3 ( e ,  f) 
shows that E, is disengaging itself from the cylinder while E; and Ei arc coalescing 
to form the shedding vortex E,. Figure 3 ( f )  shows that E, is about to  be completely 
detached from the cylinder a t  t = 12. The alternate shedding of El, E, and later 
vortices thus forms the B&nard-K&mh vortex street in the wake region. 

4.1.2. Re = 3000, CL = 1, 1.5 

We first consider the case a = 1. Figure 4(a) shows the existence of E, and a bulge 
phenomenon which will lead to the formation of the vortex E, in the lower wake. 
Figure 4(b) shows the growth of El and E, and the emergence of the intermediate 
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FIGURE 4. Patterns of instantaneous streamlines for Re = 3000, a = 1 : (a) t = 1, ( b )  3, (c) 5, 
(4 7, (e) 8, (f) 12. 

vortex E; next to the cylinder in the lower wake. It is interesting to observe that the 
lower vortex E, gains the closure point of El (at about t = 2) in the manner of single 
transposition. Furthermore, a t  t = 3 vortex E, in the lower wake is on its way to 
disengaging from the cylinder. From that time, E, competes for its ‘lost’ closure 
point and finally gains i t  back from E, at  about t = 4.5 (cf. figure 4b ,  c) .  There is 
therefore, again, an exchange of the closure points between the same pair of vortices 
El and E,. This is the phenomenon which we have called double transposition of 
closure points, and which is clearly a sign of keen competition for shedding in the 
near wake. Comparison of figures 4 (c) and 4 (d )  shows that E, shrinks in size as E, sets 
out downstream. Figure 4 ( d ,  e )  shows that between t = 7 and 8, the upper free stream 
curves downward somewhat while E, grows upward rapidly to  join the upper free 
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FIQURE 5.  Patterns of instantaneous streamlines for Re = 3000, a = 1.5: (a) t = 3, ( b )  6, (c) 8, 
(a) 12. 

stream. During the process, the intermediate vortex Ei makes its appearance and 
exchanges closure points with E,. This is exactly the same behaviour of single 
transposition observed in the preceding case of Re = 1000, a = 0.5. Comparing 
figures 3(e,f)  to 4(e , f )  shows that El and E, follow very much the same procedure 
of detachment from the cylinder in both cases. 

Next we consider the case a = 1.5. Figure 5(a ,  b )  shows that the vortex El grows 
with time next to the cylinder while a sizable bulge of streamlines near the right 
lower side of the cylinder does not lead to formation of vortices in the lower wake. 
The bulge is getting weaker as El sets out downstream at about t = 6. Figure 5 ( c )  
shows that the upper free stream curves downward, leading to the formation of an 
isolated vortex above the top of the cylinder. The curved streamlines signify the 
existence of E,, which grows gradually, disengaging itself from the cylinder. Figure 
5 ( d )  shows that by t = 12, both E, and E, have been shed. Note that the formation 
of E, has little contribution from the lower wake. The BBnard-KBrm6n vortex 
structure in the wake is completely due to the flow activity in the upper wake. The 
present flow has therefore the distinguishing feature that vortices in the lower wake 
are completely inhibited (during the period of observation), which, however, does not 
necessarily imply the deterioration of the BBnard-KarmBn vortex structure in the 
wake. 

4.1.3. Re = 9500, a = 1 

Figure 6 (a )  shows the existence of the first upper vortex, the vortex E,, and a small 
nearby vortex in the lower wake. Figure 6 (b ,  c )  shows that the first upper vortex (Ei) 
is assimilating a lower vortex (E;) to form the primary vortex El. The same figures 
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FIQIJRE 6. Patterns of instantaneous streamlines for Re = 9500, a = 1 : (a) t = 2, ( b )  3, (c) 5 ,  
(4 7, (el 9, (f) 12. 

also show that E, gains the closure point of E, by single transposition and then 
disengages from the cylinder. In the meantime, the vortex E, in the upper wake 
grows rapidly and has gained back its ‘lost ’ closure point by time t = 7 (cf. figure 6 d ) .  
We therefore see another case of double transposition. Figure 6 ( e ,  f )  shows that 
between t = 9 and 12, E, grows rapidly and joins the upper free stream, being 
accompanied by a single transposition of closure points. At about t = 9.5, El is 
completely detached from the cylinder. Figure 6 (f) shows that E, is on its way to be 
detached from the cylinder, while Ei in the lower wake and E; in the upper wake are 
coalescing to form the shedding vortex E,. The case is a special one for which we have 
the intermediate existence of E; and E; before the first shedding vortex El. E; which, 
otherwise, acts like Ej of the case Re = 3000, a = 1, is isolated by E, until the latter 
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FIQURE 7. Patterns of instantaneous streamlines for Re = 20000, a = 1 : (a) t = 1, ( b )  3, (c) 6, 
(4 7, (4  10, (f) 12. 

is detached from the cylinder. Furthermore, note that the vortex structures in the 
upper wake in figure 6(a ,  b)  are the typical P-phenomenon (or forewake), identified 
by Bouard & Coutanceau (1980) in the non-rotating case (a = 0). A similar 
phenomenon is not present in the lower wake. Figure 6 ( d  ) shows a primary vortex 
with two small counter-rotating vortices a t  its northwestern corner, which is typical 
of the a-phenomenon, also identified by Bouard & Coutanceau (1980). 

4.1.4. Re = 20000, a = 1, 1.5 
We first consider the case 01 = 1. Figure 7 ( a ,  b )  shows that the lower primary 

vortex (formed before t = 2) rapidly gains the closure point of the first upper vortex 
by single transposition. Notice again that the upper wake in figure 7 ( b )  is a typical 
P-phenomenon. A similar phenomenon is not found in the lower wake. Figure 7 (b ,  c) 
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FIGURE 8. Patterns of instantaneous streamlines for Re = 20000. a = 1.5: ( a )  t = 2, (6)  4, ( c )  6, 
( d )  10. 

shows that the primary vortex in the upper wake has assimilated a small vortex next 
to the cylinder in the lower wake by t = 6, and that the primary vortex in the lower 
wake disengages quickly from the cylinder and is seen to be detached from the 
cylinder well before t = 6. It follows that the first vortex to be shed is the first lower 
vortex, El, rather than the first upper vortex, Ei; the latter assimilates a lower 
vortex Ei. Contrary to the previous cases, figure 7(c ,  d )  shows that E, grows 
downward rapidly to join the lower free stream, leading to the formation of E, 
accompanied by a single transposition. Figure 7 ( e )  shows that E, is well detached 
from the cylinder by t = 10. Figure 7 ( d ,  e )  shows further that E, takes the 
alternative, joining the upper stream by single transposition. The BBnard-Karmdn 
vortex structure thus formed is of opposite sense to the preceding cases. Figure 7 ( e ,  f) 
shows that the vortex E, disengages from the cylinder while two vortices next to the 
cylinder are merging with each other. 

Next we consider the case a = 1.5. Figure 8 ( a d )  shows a double transposition of 
closure points, occurring between the first upper and the first lower vortices. The 
vortex E, (in the upper wake) is almost detached from the cylinder a t  t = 10. The first 
lower vortex makes little contribution to the BBnard-Karman structure ; vortices in 
the lower wake are substantially weaker though not completely inhibited (during the 
period of observation). The formation of E, is quite similar to the corresponding 
vortex in the case Re = 3000, a = 1.5, being completely due to  the downward curving 
of the upper free stream. Further plots of streamlines show that for a = 0.5 the first 
shedding vortex is also from the upper wake. Therefore there must be a value of a 
between 0.5 and 1 across which the shedding order for the first upper vortex and the 
first lower one is reversed ; another such value should come between 1 and 1.5. The 
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FIGURE 9. Patterns of instantaneous streamlines for Re = lo5, a = 1 : (a) t = 2, ( 0 )  4, ( c )  6, (d )  8. 

phenomenon of double transposition for a = 1.5 is rather delicate in that the first 
lower vortex is so weak that the corresponding streamlines are even straightening 
out a t  t = 10. We have checked the grid dependence for this case against the 
numerical far-field boundary (and therefore the distribution of mesh points). The two 
sets of plots of streamlines for ro = 25 and ro = 36 (not shown) show very close 
agreement in the sizes of vortices and locations of various stagnation points. 

4.1.5. R e  = lo5, a = 1 

This is another case in which the rotation of the cylinder favours the shedding of 
the first vortex in the lower wake. Figure 9 (a)  shows a narrow and slender vortex in 
the upper wake which forms along the right upper side of the cylinder. On the other 
hand, the lower vortex El is substantially wider in shape and much closer to the 
horizontal axis through the cylinder centre. Figure 9 ( a ,  b )  shows that between t = 2 
and 4, El in the lower wake gains the closure point of E, by single transposition. 
Figure 9 ( b ,  c )  shows that E, sets out rapidly downstream and is well detached from 
the cylinder by about t = 5. In  the meantime, the slender vortex (which turns out to 
be E;1) is assimilating a small vortex (Eg) in the lower wake to form E,. Comparison 
of figures 7(c,  d )  and 9(c ,  d )  indicates that  E, follows the same procedure of 
detachment as that of E, in the case R e  = 20000, a = 1.  

4.1.6. R e  = lo6, a = 0.5 
In this case, the physical phenomena are presented along with a comparative 

study of grid dependence on the time step. Figure 10(a, b )  shows that the first lower 
vortex E, gains the closure point of the primary vortex in the upper wake, then 
disengaging quickly from the cylinder. The upper wake in figure 10 (b )  is clearly a p- 
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(ii) 

FIGURE 10. Patterns of instantaneous streamlines for Re = los, OL = 0.5: (a) t = 2, ( b )  4, ( c )  6; 
( i )  At = 0.02; (ii) At = 0.01. 

phenomenon. Figure 10 (c) shows a plot of streamlines a t  t = 6. No further discussion 
will be continued on the physical process from t = 4 since grid dependence against the 
time step shows significantly different pictures of streamline patterns. Figure 
lO(a(ii)-c(ii)) shows plots with At = 0.01 a t  the same times. Satisfactory agreement 
is found a t  t = 2 and 4, while significantly different flow pictures are present a t  t = 6. 
Therefore the present grid and time steps are not sufficient to resolve the flow 
behaviour after t = 4. It is probable that the flow soon varies violently or even 
turbulently in the two-dimensional sense, denying accurate analysis by the present 
approach with insufficient mesh points. 

To demonstrate the validity of the present numerical results, streamline patterns 
and velocity profiles are compared to  those obtained by Badr et al. (1990) for some 
selected cases. Figures 11 and 12 show quite good agreement between these results 
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FIGURE 11. Comparison of streamline patterns for Re = 1000, a = 0.5 at t = 4: (a) present plot, 
( b )  flow visualization experiment in Badr et al. (1990), (c) numerical result in Badr et al. (1990). 



282 C.-C. Chang and R.-L. Chern 
(0) 

7 

C,' 

-=T7 

E, 

. s. 

FIGURE 12. Comparison of streamline patterns for Re = 1000, a = 2 at t = 10: (a)  present plot, 
(6) flow visualization experiment in Badr et al. (1990), (c) numerical result in Badr et al. (1990). 
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( b )  U, versus at 8 = 4%. Experimental points taken from Badr et al. (1990) : 0 ,  t = 1 ; 0,  2 ; 
0,  4. 

in the near-wake structures, while figure 13 (a, b) shows good agreement between the 
velocity profiles along the azimuthal angle 0 = in. It is noted that in order to have 
close comparison between the streamline patterns, the values of the stream functions 
in figures 1 1  (a) and 12 (a) are different from those for the previous plots. Comparisons 
in figure 13(a, b) are made only with the experimental data; we notice that the 
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agreement is much better if comparisons are made with the numerical data of Badr 
et al. (1990). 

4.2. Shedding order 

Now we explain the different shedding patterns. Owing to the relative motion, the 
flow past the upper part of the cylinder can be thought of as having a larger effective 
Reynolds number than the flow past the lower side. It is therefore true that the 
vorticity shed from the upper part of the cylinder is stronger than that shed from the 
lower side right after the flow is started. Naturally, one expects that the first vortex 
to be shed will be the first upper one, which is indeed true for flows at relatively low 
Reynolds numbers. However, we have seen that the flow topology a t  higher 
Reynolds numbers is significantly different from that a t  lower values. In order to 
understand the different shedding patterns, it  is worth classifying the flow patterns 
in the near wake. 

The patterns of vortices are found to be basically the same as those in the non- 
rotating case. They may be isolated vortices forming after a bulge phenomenon, or 
form the a-phenomenon or the P-phenomenon (forewake), as classified by Bouard & 
Coutanceau (1980). All of these patterns have been identified in different cases in 
54.1. Here we are particularly interested in the forewake behaviour which may serve 
to account for the first shedding coming from the lower wake. It is noticed that a 
stronger forewake implies the P-phenomenon occuring a t  a higher position away 
from the horizontal axis through the cylinder centre. When there is a strong forewake 
in the upper wake, the primary vortex in the lower wake is then relatively closer to 
the horizontal axis, being in a better position to disengage itself from the cylinder. 
This strong asymmetry in facilitating shedding of the lower vortex is most 
conspicuous for moderate values of a a t  high Reynolds numbers. 

The first vortex shed cannot be from the lower wake for a sufficiently close to 2 as 
the appearance of the lower vortex is substantially inhibited (at least in initial 
periods). The deterioration of vortices in the lower wake has also been confirmed by 
Diaz et al. (1983) and Calamote (1984) among others, for various cases. At relatively 
low Reynolds numbers, the upper vortex is never too far away from the horizontal 
axis to be the first vortex shed away from the cylinder. When the forewake behaviour 
is clear but not significant, we have a region of transition where strong competition 
for shedding exists between the first two vortices in the form of double transposition 
(of closure points). 

Returning to the diagram in figure 2, we can associatc the cases discussed above 
with particular regions. In region R,: (Re ,a)  = (1000,0.5), (3000,1.5); in R,: 
(3000, l ) ,  (9500, l ) ,  (20000, 1.5); and in R,:  (20000, l ) ,  (lo5, l ) ,  (106,0.5). Also, the 
previous observations of Badr & Dennis (1985) and Coutanceau & MBnard (1985~)  
fall into the region R ,  that favours the upper shedding. Furthermore, it has to be 
emphasized that the shedding order for either numerical or experimental dis- 
turbances in a region of transition may become somewhat blurred; the following 
section is devoted to examining this matter. 

4.3. Remarks on shedding patterns 

Further remarks can now be made concerning the nature of the diagram in figure 2.  
The study has been extended to include a = 0.2,0.7 for each Reynolds number under 
consideration in order to  locate the two curves C, and c, more precisely. The critical 
Reynolds number Re* is conceived to be near 10000, above which the P-phenomenon 
is significant. According to figure 2, for a given a,  the shedding order of the first upper 
and lower vortices is reversed as the Reynolds number is increasing across the curve 
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C,, behind which the shedding of the lower vortex is favoured. Before the order is 
changed a keen competition for shedding is evident from the existence of the 
phenomenon of double transposition in the transition region R,. 

It is important to  notice that although there are clear shedding patterns associated 
with each identified region, the detailed flow behaviour near the transition curve el 
requires further analysis. Recall the case of Re = 9500, a = 1 in which the double 
transposition is quite like a process of ‘intercepting’ the vortex E, (by E,) instead of 
completely blocking the vortex a t  its downstream head. Therefore it would be more 
useful to consider the curve C, as a narrow region of transitional nature instead of a 
clear line dividing the two regions R, and R,. The precise specification of the curve 
C,  also requires further study; however, the trend shown by the curve is reasonably 
correct according to the available data. Indeed, Coutanceau & MBnard (1985 b )  
appear to indicate that the phenomenon of double transposition occurs at the lower 
Reynolds number Re = 1000 for a = 0.5, while figure 2 indicates that  for a = 0.5 the 
phenomenon is likely for Re > 1500. On the other hand, Badr et al. (1990) do not seem 
to have identified the phenomenon in their joint numerical and experimental 
analysis. Owing to the finite accuracy of both numerical and experimental work, it 
might be reasonable again to consider that C, represents a narrow region of 
transitional nature. 

No further analysis has been done to investigate the flow behaviour near a = 0. 
One important observation is that the phenomenon of double transposition in R, is 
not repeated in later shedding. The single transposition mentioned for R, is only 
associated with the shedding of the first lower vortex. The type of single transposition 
in R, associated with the first lower and the second upper vortices is, however, found 
to exist after the initial shedding in a wide range of Reynolds numbers. Therefore we 
may conclude that the impulsive start of the cylinder is only sensed by the initial 
shedding; thereafter a regular flow pattern which varies periodically may be 
expected. It is evident that figure 2 can be extended symmetrically to  negative 
values of a about the Re-axis; statements of opposite sense to those made for a > 0 
are clearly applicable there. One question of special interest related to  the figure 2 is 
whether or not there is even stronger competition in the form of triple, or further 
transposition of closure points. The stronger competition was not observed 
throughout our (even more extensive) investigation, which, however, in no way 
denies the possibility in other flow motions. 

4.4. Comparison of lift and drag 
Figure 14(u-c) shows comparisons of the drag and the lift coefficients computed with 
different approaches: analytical and S, P, V approaches with At = 0.01 a t  various 
values of Re and a. Figure 15(a-c) shows the results of grid dependence against the 
time steps : At = 0.01 and 0.02 for the different numerical approaches. In  all the cases, 
the far-field boundary is set a t  r, = 25. Let h = (2t/Re)i, then the analytical results 
are given by 

87ct 1 27c c ---+- 
D -  Re h Re’ 

C, = -a 

These results, which are valid a t  small times, were obtained by Badr & Dennis (1985) 
using the method of truncated series. All these comparisons show that approach S 
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FIQURE 15. Grid dependence checked against the time step for the drag coefficient : 
(a )  Re = 20000, a = 1; ( b )  Re = lo6, a = 1; (c) Re = lo', a = 0.5. 
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which is sensitive to the time step is much less satisfactory than P and V. Figure 
14(as)  shows that both P and V yield results in generally good agreement with the 
analytical results on the drag and lift coefficients a t  small times. The computed and 
analytical results show, however, initial discrepancies from t = 0 to about 0.3 in the 
comparisons of the lift coefficients. In  fact, Badr & Dennis's results (25) and (26) 
imply that it is much more delicate to compute the lift cocfficeint than the drag 
coefficient since the small initial lift is a consequence of exact cancellation of the 
leading terms of the orders A-' and Ao in integrating surface vorticity and pressure 
along the cylinder surface (cf. (10)). On the other hand, the drag coefficeint which has 
the same order of vorticity is not subject to similar cancellation. This explains why 
we typically get better initial trends of the drag coefficient rather than the lift 
coefficient. In  order to have smaller initial errors, one may take much smaller time 
steps, as indicated by the results of grid dependence. Nevertheless, in the present 
study we are satisfied with At = 0.02 (which confines the substantial initial errors to  
t < 0.3) since the only reason for going to extremely small time steps is for initial 
accuracy of the lift coefficient. 

Figure 15(a) shows that the results for Re = 20000 are almost insensitive to the 
time step. Approaches P and V yield quite close results with either At = 0.01 or 0.02. 
However, figure 15(b) for Re = lo5 shows substantial differences in the drag 
coefficients between the results for At = 0.01 and 0.02 from t = 7.3. The situation for 
the lift coefficients is somewhat milder, but clear differences can be observed from an 
even earlier time, about t = 3.5. Figure 15(c) for Re = los shows greater differences 
between the results of At = 0.01 and 0.02 from about t = 3.8 though approaches P 
and V yield quite close results with the same time step. It is observed that approach 
S yields quite fluctuating drag coefficients with either At = 0.01 or 0.02, which, 
however, oscillate well round the results computed with approaches P and V. Recall 
that a strong dependence on the time step has also been reflected in the plots of 
streamlines (cf. figure 10c). Flow at higher Reynolds numbers may therefore become 
turbulent sooner, denying accurate analysis with limited mesh points. We conclude 
that the time step At = 0.02 with the given mesh ( p  x q = 128 x 200) is satisfactory in 
identifying the initial shedding patterns of the cases under consideration, but 
becomes less meaningful as the Reynolds number is increasing, in the sense discussed 
above. In  the rest of the paper, our discussions on the lift and the drag coefficients, 
unless stated explicitly, all refer to results computed with approach V. 

4.5. Surface vorticity distribution 
Flow properties may vary rapidly near the solid boundaries in unsteady viscous 
flows. It is therefore difficult to  have precise details of the flow behaviour near the 
cylinder surface with the aid of the equations of motion. Nevertheless, it is 
conceivable that some flow features near the cylinder may be read from the surface 
vorticity (and the surface pressure) distribution. This is indeed true in the present 
study; some basic rules seem to be like the following. We consider two cases in 
details: Re = 3000, a = 1 and Re = 20000, LX = 1. First, we observe that the front 
stagnation point, whenever very close to the wall, corresponds to  a minimum of 
surface vorticity. The same is true of a closure point. Figure 16a (16b) shows that the 
position of the minimum between 6 = 120' and 180" is indeed in close agreement with 
the position of the front stagnation point in figure 4 (a-f) (7 (a-f)) a t  different times. 
In both cases, the position of the minimum moves steadily upstream from t = 1 to 
7, and then moves back and forth from t = 8. The last fact indicates that the front 
stagnation point does not reach a steady position during the period of observation. 
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Secondly, a minimum in surface vorticity may signify that adjacent fluid has 
streamlines deflected somewhat away from the cylinder surface (bulge phenomenon). 
This behaviour is clearly illustrated by contrasting the position of any minimum in 
figure 16a (16b) and the nearby streamlines shown in figure 4(a-f) (7(a-f)). On the 
other hand, a maximum in surface vorticity signifies that adjacent fluid has 
streamlines clustering round the cylinder surface. Figure 16 (a, b) shows that this 
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behaviour near a maximum can be observed from the streamlines at  nearly 8 = 240" 
and at  different angles on the right upper side of the cylinder, as can be verified by 
figures 4 (a-f) and 7 (a-f). The behaviour of the maximum between 8 = 0' and 60' in 
figures 16(a) and 16(b) shows that the place at which the strongest recirculation 
takes place increases in 8 from t = 1 to about 3, then decreases for a period of time. 
The last fact implies that the centre of a nearby vortex, when it exists, moves to 
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FIGURE 18. Contours of the spatial pressure for Re = 3000, a = 1 : (a) t = 2, ( b )  8. 

higher positions (measured in 0 )  and then proceeds to lower positions. Furthermore, 
a maximum in surface vorticity with two neighbouring minima could possibly 
indicate the existence of a vortex next to the cylinder surface. For example, in both 
of the cases considered, there is clearly a small vortex, at  t = 3, next to the cylinder 
surface in the lower wake (cf. figures 4b, 7b) which corresponds to the maximum 
between 8 = 300' and 360' with two neighbouring minima. Finally, we notice that 
the overall magnitude of the surface vorticity for Re = 20000, a = 1 is about 2.5 
times that for Re = 3000, a = 1. This roughly indicates that the magnitude of surface 
vorticity increases at  a rate proportional to the square root of the Reynolds number. 
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t 

This rate is necessary for the drag and even the lift coefficients (due to pressure) to 
remain a t  a fairly stationary level over a range of Reynolds numbers. 

4.6. Pressure, lift and shedding 

The bchaviour of the surface pressure distribution appears almost to  be opposite to 
that of the surface vorticity distribution. Larger positive vorticity corresponds to 
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FIGURE 19. Time histories of the lift coefficients at different a: (a) Re = 3000, (b )  9500, 
(c) 20000, (d) lo6. 

lower pressure. The position of minimal surface pressure, however, lags behind the 
corresponding position of (locally) maximal surface vorticity . Therefore, a bulge 
phenomenon or a closure point near the cylinder surface signifies a region of 
relatively high pressure while streamlines clustering round the surface signify a 
region of relatively low pressure. Contrasting figures 17 (a, b) and 16(a, b) shows the 
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validity of the above remarks. Pressure distributions are actually the key elements 
to understanding the time variation of the lift coefficient and the vortex shedding 
phenomenon. Below we consider two cases in detail. 

4.6.1. Re = 3000, a = 1 
Recall that the potential flow is predominant for an initial moment of flow 

development. Right after the flow is started, the pressure on the back of the cylinder 
recovers quickly from substantially low values. The pressure is high near the front 
and back of the cylinder, and is low near its top and bottom. The front stagnation 
point S appears, and by t = 1 has an azimuthal angle clcarly less than 180". The last 
fact signifies that the front region of high pressure extends downstream along the 
upper cylinder surface (cf. figure 18a). In  the meantime, a region of strong 
recirculation forms rapidly near the right upper side of the cylinder, indicating the 
formation of a local region of relatively low pressure nearby. These observations 
correspond to the fact that  the lift in figure 14(b) is initially downward, increasing 
in magnitude with time, and begins to decrease when the recirculation becomes 
significant. The negative of the lift coefficient rises again when a sizable bulge 
phenomenon near the top of the cylinder makes its appearance, pushing against the 
region of strong recirculation. We also notice that the pressure near the right lower 
side of the cylinder has been relatively high, pushing the primary lower vortex E, 
downstream. Competition for shedding therefore exists between vortices in the lower 
and the upper wakes. The 'pushing effect' in the upper wake evidently outweighs 
that in the lower wake, leading eventually to the detachment of the first upper 
vortex. Note that in this case the forewake in the upper wake is not significant. 

Figure 14(b) shows that a t  t = 7.83, the negative of the lift coefficient reaches a 
substantial (local) maximum. On the other hand, figure 4(d, e )  indicates that E, is 
well detached from the cylinder by t = 8. Figures 17(a) and 18(b )  indicate that a t  
t = 7.83 the front region of high pressure joins with that a t  the back; a region near 
the right upper side of the cylinder is filled with fluid of high pressure. From t = 7.83, 
the negative of the lift coefficient decreases gradually and reaches a minimal value 
shortly after t = 12 (at about t = 12.2). Indeed, figure 17 ( a )  indicates that a t  t = 12 
fluid near the right lower side is of relatively high pressure while a region near the 
right upper side is filled with fluid of relatively low pressure. Recall that  E, is about 
to be shed a t  t = 12. The above observation has the following implication. The 
alternate formation of regions of relatively high pressure in the lower and the upper 
wakes is a conspicuous signature of the shedding of El, E, and perhaps vortices 
shedding later, marking extrema of opposite senses in a lift coefficient. It is therefore 
appealing to  define the moment t = 7.83, that  is, when the first substantial extremum 
of the lift coefficeint is attained, to be the shedding time t i  of the vortex E, and 
t = 12.2 (estimated) to be the shedding time of the vortex E,. Evidently, the 
definition of shedding time is not sufficient to describe when a particular vortex 
begins to  disengage itself rapidly from the cylinder. One possibility for this purpose 
is to  define a disengaging time th to  be the instant a t  which the lift curve changes its 
sign of curvature and which is just before the negative of the lift coefficient reaches 
the maximum. This definition could be quite artificial, but is one obvious choice 
which has the meaning that the lift coefficient is on its way to  reaching an extremum 
at  the time defined. According to  this definition, we find the disengaging time 
tb = 5.90 for El and tb = 10.20 for E,. 
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a\Re 1000 3000 9500 20 000 1 0 5  

- - 2.0 10.33 11.79 - 

1.5 7.85 8.65 9.71 10.67 6.11 
1 .o 6.75 7.83 9.67 4.17 5.57 
0.5 7.33 8.95 11.43 12.50 5.88 

TABLE 1 .  Shedding times of the first vortices shed 

&\Re 1000 3000 9500 20 000 1 0 5  

2.0 5.90 7.62 10.67 - - 

1.5 4.70 5.95 7.00 8.20 4.50 
1 .o 4.48 5.90 7.96 2.98 4.15 
0.5 4.83 6.30 9.55 10.70 4.35 

TABLE 2. Disengaging times of the first vortices shed 

4.6.2. Re = 20000, a = 1 

The initial development is quite close to  the preceding case. A region of strong 
recirculation, however, appears a t  a higher position relative to the horizontal axis 
through the cylinder centre. In  other words, the P-phenomenon is significant. Figure 
14 ( c )  shows that in contrast to the preceding case the lift coefficeint reaches a positive 
(upward) maximum at t = 4.17 when E, is about to be shed. Figure 17 ( b )  shows that 
at t = 5, a region near the right lower side of the cylinder contains fluid of relatively 
high pressure while a region of low pressure is still attached to the right upper side. 
Figure 17 ( b )  shows further that a region of relatively high pressure exists next to the 
right and the upper sides of the cylinder. We see, therefore, another case of alternate 
formation of regions of relatively high pressure in the lower and the upper wakes, 
which correponds well to the alternate shedding of vortices. We may similarly find 
t i  = 4.17, ti = 9.93 and tb = 2.98, tk = 7.93 for E, and E,. 

4.7. Lift, drag and moment 

Figure 19(a-d) displays time variations of the total lift coefficients with different 
values of a for Re = 3000, 9500, 20000 and lo5 respectively. It can be seen that the 
contribution to the lift (coefficient) from friction is small and is getting smaller as the 
Reynolds number is increasing. For a given Reynolds number, there seems to be no 
definite ordering relationship between the (total) lift coefficients a t  different values 
of a. However, the negative of the lift coefficient does indeed increase with increasing 
the speed ratio a in an initial period; this agrees with (26). The amplitude of the lift 
coefficient clearly increases with increasing the speed ratio u. For cases with clean 
shedding patterns, the cylinder may first experience a clean downward maximal lift 
when the first shedding vortex is from the upper wake, or an upward maximal lift 
otherwise. The behaviour of the lift coefficient becomes blurred when there is strong 
competition for shedding between vortices in the upper and the lower wakes, for 
example, in the cases Re = 9500, a = 1 and Re = 20000, a = 0.5. These two cases are 
indeed of transitional nature, as explained in $4.3, regarding the shedding patterns. 
The lift coefficients also provide the data for the disengaging and shedding times of 
the first vortices shed. The results are summarized in tables 1 and 2. We note here 
that sometimes i t  is difficult to mark clearly a reflection point on the lift curves; the 
listed disengaging times are not without some errors or indefiniteness. For a given 
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FIGURE 20. Time histories of the drag and moment coefficients at different oc for Re = 20000: 
(a) drag coefficient, ( b )  moment coefficient. 

Reynolds number, the shedding time and the difference in the shedding and the 
disengaging times are relatively small for moderate a, say, in a range nearby 1. This 
is reasonable according to the diagram in figure 2. For small a, strong competition 
exists in the form of double transposition while for 01 close to 2, vortices in the lower 
wake are substantially suppressed, with the formation of the BBnard-Karman 
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structure being completely due to flow activity in the upper wake. Figure 20(a, b )  
displays the results of the drag and the (frictional) moment coefficients with different 
a for Re = 20000. For this Reynolds number, we observe that the initial behaviour 
of the drag coefficient is independent of a (cf. (25)) though the amplitude of the drag 
coefficient does increasc with a. Nevertheless, it is difficult to relate the time 
variations of the drag and the moment coefficients to  vortex shedding since vortex 
shedding is mainly due to  asymmetry of the upper and the lower wakes. For 
Re = 3000, it is observed that a disengaging time t& defined by the lift coefficient 
corresponds roughly to when the drag coefficient reaches a (local) maximum, 
especially for a = 1.5,2. A time tg corresponds roughly to  when the drag coefficient 
reaches a minimum. That is, the drag coefficient reaches a maximum (minimum) 
when an upper (lower) primary vortex begins to disengage itself rapidly from the 
cylinder. This observation is, however, not conclusive for the case Re = 20000. Here 
we will not pursue further the relation between the drag coefficient and the vortex 
shedding behaviour, owing to insufficient periods of Observation. 

5. Concluding remarks 
This study parallels Chang & Chern (1991) which concerns symmetric flows about 

a circular cylinder. It proves successful to apply a hybrid vortex method to  study the 
flow past an impulsively started rotating and translating circular cylinder. The range 
of flows under consideration is substantially wider than previous work on the same 
subject ; the present study provides much useful information, in particular on flows 
at moderately high Reynolds numbers. The shedding patterns are classified ; time 
variations of lift coefficients are shown to be clearly related to alternate shedding of 
vortices. Several aspects related to the flow behaviour are found to  be consistent with 
previous detailed numerical and experimental work a t  relatively low Reynolds 
numbers. Computation of the force coefficients indicates that extracting accurate 
results for the quantities which are not direct solution variables is of equal 
importance as the numerical method itself. 
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